Circular Motion - Self Test

1. An electron ($\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$) moves in a circle whose radius is $2.00 \times 10^{-2} \mathrm{~m}$. If the force acting on the electron is $4.60 \times 10^{-14} \mathrm{~N}$, what is its speed? ($3.18 \times 10^{7} \mathrm{~m} / \mathrm{s}$)

2. 6) A 925 kg car rounds an unbanked curve at a speed of $25 \mathrm{~m} / \mathrm{s}$. If the radius of the curve is 72 m , what is the minimum coefficient of friction between the car and the road required so that the car does not skid? (0.89)
1. A $2.7 \times 10^{3} \mathrm{~kg}$ satellite orbits the Earth at a distance of 1.8 x 107 m from the Earth's centre at a speed of $4.7 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What force does the Earth exert on the satellite? $\left(3.3 \times 10^{3} \mathrm{~N}\right)$

2. You are riding your bike on a track that forms a vertical circular loop. If the diameter of the loop is 10.0 m , what is the minimum speed required for you to make it around the loop? $(7.00 \mathrm{~m} / \mathrm{s})$

3. You are swinging a bucket of water in a vertical circle. Assuming that the radius of the rotation of the water is 0.95 m , what is the minimum velocity of the bucket at the top of its swing if the water is not to spill? Hint: imagine the water is a solid chunk sitting in the bucket ($3.1 \mathrm{~m} / \mathrm{s}$)

4. A student has a weight of 655 N . While riding a roller coaster they seem to weigh $1.96 \times 10^{3} \mathrm{~N}$ at the bottom of a dip that has a radius of 18.0 m . What is the speed of the roller coaster at this point? $(18.7 \mathrm{~m} / \mathrm{s})$
5. A string requires 186 N of force to break. A 1.50 kg mass is tied to the string and whirled in a vertical circle with a radius of 1.90 m . What is the maximum speed that this mass can be whirled at without breaking the string? $(14.7 \mathrm{~m} / \mathrm{s})$
6. A 2.2 kg object is whirled in a vertical circle whose radius is 1.0 m . If the time of one revolution is 0.97 s , what is the tension in the string (assume uniform speed)
a. a) at the top? (71 N)
b. b) at the bottom? (114 N)
7. A 915 kg car goes over a hill of circular arc. If the radius of the curve is 43 m , how fast can the car travel without leaving the road at the top of the arc? $(21 \mathrm{~m} / \mathrm{s})$
8. What is the maximum speed for a car rounding a 125 m curve on a highway under very icy (no friction) conditions if the banking angle is 20.0°. $(21.1 \mathrm{~m} / \mathrm{s})$
(trick, you can do it, draw a good FBD. Start by writing down what your think is TRUE)
