The General Case of a Riemann Sum....
Once upon a time there was a function. A Sasquatch wanted to find the area under the function below from \mathbf{a} to \mathbf{b}. He decided to approximate by using the area of a rectangle.

As you can see from the diagram we could • use the Following formula:

$$
\begin{aligned}
& \text { AGRA }=\text { wist } \times \text { height } \\
& \text { AGRA }=w \times h \\
& A R \in A=(b-a) \cdot f(b)
\end{aligned}
$$

This is a poor approximation so the Sasquatch tried using more rectangles. He used 5 rectangles all with equal widths $\Delta \mathrm{x}$.

He then found the area to be:

$$
A R \leq A=\underset{\text { wiDTH }}{\Delta x}\left[f\left(x_{1}\right)\right]+\Delta x\left[f\left(x_{2}\right)\right]+\Delta x\left[f\left(x_{3}\right)\right]+\Delta x\left[f\left(x_{4}\right)\right]+\Delta x\left[f\left(x_{5}\right)\right]
$$

The Sasquatch noticed that the height of each rectangle was different but the width $\Delta \mathrm{x}$ was always the same so he factored $\Delta \mathrm{x}$ out:

$$
\Delta A x a=\Delta x[f(x)+f(x)+f(x)+f(x)+f(x)]
$$

An Alien from outer space saw the Sasquatch's work and said "Hey you can write that as a summation!"

$$
A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Great Said the Sasquach!..

But what what is $\boldsymbol{x}_{\boldsymbol{i}}$?

Well...If you look carefully you will see that $\boldsymbol{x}_{\boldsymbol{i}}$ keeps changing as we advance \boldsymbol{i} in the summation. The formula for $\boldsymbol{x}_{\boldsymbol{i}}$ would be:

$$
x_{i}=a+\Delta x(i)
$$

What is $\Delta \mathrm{x}$?

$\boldsymbol{\Delta}$ just depends on the length of the interval and how many rectangles we use.

$$
\Delta x=\frac{b-a}{n} \quad \begin{array}{ll}
n=\text { \# of RELTANGLES } \\
& \text { you wISH TO USE. } \\
& a \rightarrow b \text { INTERVAL OF AREA. } .
\end{array}
$$

Great. Now we have a formula that can approximate the area under any function $f(x)$ between the intervals \mathbf{a} and \mathbf{b}

Examples:
EXAMPLE ESTIMATE THE AREA UNDER THE FUNCTION:

$$
f(x)=\frac{1}{x} \quad \text { from } x=1 \text { to } x=5
$$

$$
\text { USE } n=4\{\text { I of RECTNGLLES }\}
$$

Using Riemann Sum Formula:

$$
\begin{aligned}
& A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad x_{i}=a+\Delta x(i) \\
& \Delta x=\frac{b-a}{n} \\
& A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& A=\sum_{i=1}^{4} F(a+\Delta x(i)) \Delta x \\
& \text { - } \Delta x=1 \\
& \text { - } x_{i}=a+\Delta x(i) \\
& A=\sum_{i=1}^{4} f(1+1(i)) 1 \quad \text { REMINDER: } f(x)=\frac{1}{x} \\
& A=\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right] 1
\end{aligned}
$$

$$
A=0.5+0.333+0.25+0.2
$$

Ex. 2
$A=1.2835$ THIS IS THE APPROXIMATE AREA UNDER The Function $f(x)=\frac{1}{x}$ from $1 \rightarrow 5$
FIND THE AREA UNDER $3 x+1$

FROM $2 \rightarrow 6$ USN 64 RECTANGLES!

$$
\begin{array}{ll}
A=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x & n=4 \\
A=\sum_{i=1}^{4} f(a+\Delta x(i)) \Delta x & \cdot \Delta x=\frac{b-a}{n} \\
A=\sum_{i=1}^{4} f(2+1(i)) \cdot 1 & \cdot x_{i}=a+\Delta x(i)
\end{array}
$$

$$
\begin{aligned}
& A=[f(3)+f(4)+f(5)+f(6)] \cdot 1 \\
& A=[10+13+16+19] \cdot 1 \\
& A=58 \text { UNITS }^{2}
\end{aligned}
$$

Example \#3

$A=\sum^{4} f(a+\Delta x(i)) \Delta x \quad \cdot \Delta x=\frac{1}{4}$

- $x_{i}=a+\Delta x(i)$
$A=\sum_{i=1}^{4} f\left[0+\frac{1}{4}(i)\right] \frac{1}{4} \quad f(x)=$
$A=\left[\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{4}\right)^{2}+(1)^{2}\right] \cdot \frac{1}{4}$

$$
A=0.46875
$$

