Part 1 solve for x in equations for the expression below, SOLVE FOR \boldsymbol{x}

1) $3=5+x$
2) $5=\frac{x}{2}$
3) $6=-2 x+4$
4) $9=\frac{18}{x}$
5) $4-5 x=14$
6) $4=\frac{16}{x+2}$

Part 2. Solve for the unknown variable indicated:

1) $\frac{x}{9}=\frac{8}{20}$ find x
2) $E_{p}=m g h$
if $E_{p}=1225 \quad g=9.8 \quad h=305$ find \boldsymbol{m}
3) $E=m c^{2}$
if $m=50, \quad c=300 \quad$ find \boldsymbol{E}
4) $E_{k}=\frac{1}{2} m v^{2}$
if $\mathrm{m}=4, \mathrm{v}=22$ find $\boldsymbol{E}_{\boldsymbol{k}}$
5) $d=v_{i} t+\frac{1}{2} a t^{2}$
if $\quad d=12 \quad t=2.1 \quad a=-4.3, \quad$ find \boldsymbol{v}_{i}
6) $v_{f}^{2}=v_{i}^{2}+2 a d$
if $\quad v_{f}=13.7, \quad a=-2.25, \quad d=154 \quad$ find v_{i}

Graphing

Graph the following data on the graph below:

X	1.2	2.2	3.3	4.2	5.3	6.2	7.4
Y	3.5	4.4	5.6	6.4	7.3	8.3	9.2

a) Determine the slope of the line from the graph
b) Using the graph estimate the \mathbf{y}-intercept.
c) Using the formula $y=m x+b$, write the equation for the line on the graph (where $m=$ slope of the line and b is the y-intercept)

Unit conversions - look them up if you have to

1) 3500 m into km
2) \qquad
3) 2.4 hours into seconds
4) \qquad
5) 4 cm into meters
6) \qquad
7) 178 cm into meters
8) \qquad
9) 22.3 meters $/$ second into $\mathrm{km} / \mathrm{hr}$
10) \qquad
Convert the following into scientific notation or back to standard form (leave this one if your not sure how to do it... We will cover it tomorrow).
11) 43126
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) 0.0000150
17) \qquad
18) 9.70×10^{-4}
19) \qquad
20) 5.16×10^{-5}
21) \qquad
Round the following to the number of figures shown
22)

6.349 round to 2 decimal places
13) \qquad
14) 1.03433 round to 2 decimal places
14) \qquad
15) Trigonometry: Find the missing side using the angle and side given:

16) Find the length of the missing side using Pythagorean Theorem:

These next ones are very challenging - only try them if you want a challenge and have the time!
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \quad G=6.67 \times 10^{-11}, m_{1}=3.45 \times 10^{16}, m_{2}=1.34 \times 10^{7}, F_{g}=1.26 \times 10^{4}$, find r
$L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}} \quad L=13.0, v=2.1 \times 10^{8}, c=3.0 \times 10^{8}$, find L_{0}
$m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad m=2.5 \times 10^{6}, m_{0}=2.2 \times 10^{6}, c=3.0 \times 10^{8}$, find \boldsymbol{v}
$N_{1} \sin \theta_{1}=N_{2} \sin \theta_{2} \quad N_{1}=1.35, N_{2}=1.04, \theta_{1}=24$, find θ_{2}

