
Creating Functions

in Python

What are functions?

Functions are little self-contained programs that perform a specific task. As

we’ve seen, python comes with many pre-made functions: max() abs() sqr(),

but you can also make your own.

Example:

def happyBirthday(person):

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear " + person + ".")

 print("Happy Birthday to you!")

We could then “call” our function above in a program above using any name we wanted:

happyBirthday('Emily')

happyBirthday('Jeff')

Why should we use functions (or make our own)?

You have probably noticed that you can create quite complex programs without dividing

them up into functions, but there are several reasons why you should become familiar with

how to create functions and how they work:

1. Function are the standard way in which code is written in most computer

languages. Even if they aren’t always necessary, lots of code you will see in lessons

and examples on the internet will be written using functions. Most people make a

habit of writing code using functions, so you have to become familiar with them.

2. Reusability. Once a function is defined, it can be used over and over and over

again. You can save functions or

grab them from other programs and

use them in new projects.

3. Great way to divide up the

work. Complex programming

projects involve lots people and

many objectives. Using functions

allows problems to be broken up

into smaller specific tasks.

Look closer at the previous example:

Let’s say you write a program that is designed to print out the “happy birthday”

song to a friend:

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear Emily")

 print("Happy Birthday to you!")

Perfect. We could also reuse this code again for another friend by simply cutting

and pasting the code and replacing the word Emily with the Jeff

print("Happy Birthday to you!")

print("Happy Birthday to you!")

print("Happy Birthday, dear Jeff")

print("Happy Birthday to you!")

A more efficient way to do this in programming would be to create a function

Example:

def happyBirthday(person):

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear " + person + ".")

 print("Happy Birthday to you!")

We could then “call” the function in our program using any name we wanted:

happyBirthday('Emily')

happyBirthday('Jeff')

Exerciese#1

Type the function above into

Trinket and then call the

function with your name and a

friend’s name as the (person)

parameter.

NOTE: parameters are values that can put into a function.

In the example above (person) is required parameter.

Anatomy of a function in python

As you can see from the example above:

def - is the keyword that tells python you are creating a function.

name – the name of a function you use to call the function.

Parameter – information you need to give to the function.

Return statement – code that output or return the desired value.

Exercise #2

Type in the following snippets of code to Trinket. Use the functions to determine the max
value of numbers that you choose. Use the functions, repeatedly, by calling the functions
with different parameters.

Function to find max of 2 numbers:

def max_of_two(x, y):
 if x > y:
 return x
 return y
print(max_of_two(3,7)

Function to find max of 3 numbers:

def max_of_three(x, y, z):
 return max_of_two(x, max_of_two(y, z))

print(max_of_three(3, 6, -5))

Notice here how we “called”
the previous function within
this new function. TRICKY!

Exercise 3

Type in the following snippets of code below to Trinket. “Call” the functions with

appropriate parameters to see them work.

def absolute_value(num):

 if num >= 0:

 return num

 else:

 return –num

Note: this function is not necessary! Remember the built in function abs()

Dice throw:

import random

def roll_dice(sides):

 number = random.randint(1,sides)

 return(number)

sides = int(input("How many sides does the dice have?"))

throw = roll_dice(sides)

print(throw)

Exercise#4

Your turn….

a) Create a function that you can use repeatedly use that returns and prints the cube
root of a number.

b) Create a function that converts inches to centimeters.

c) Create a function that can take a take someone’s birthday and outputs how old they
are.

Exercise#5

See if you can create a series of functions that make drawing basic shapes in python turtle
easier.

create at least 3 and get you classmates to do three different ones. Share your functions
with each other and use the functions to draw some cool stuff.
Show Mr. Walzl when you are done.

Example:

Making a solid circle (disk)

import turtle as t

def draw_disk (col,size, x, y):

 t.penup()

 t.goto(x,y)

 t.pendown()

 t.color(col)

 t.begin_fill()

 t.circle(size)

 t.end_fill()

draw_disk('red',25,20,20)

Exercise #6

Write a function called calculator(operation, num1, num2).
When calculator()is called with an operation (add, subtract, divide, multiply) and two
numbers, it will print out the answer needed.

Exercise #7

Using your brief experience using python, think of a task or section of code that you seem
to use repeatedly. Write a function that you think might be useful to have on hand in the
future.
You may start to build your own “library” of functions in a separate file that you can use on
future projects.

