Essential Circuit Rules

RULE#1

When resistors are in series you can just add them together to get determine a total (or equivalent resistance

RULE#2

When resistors are placed in parallel, this will you are essentially adding paths for electrons to flow. This will decrease the total resistance. You can find the total (or equivalent resistance) using the following formulas:

RULE#3

Current in = Current out. Remember current is a flow of particles. When current comes to a juncture it splits. The total current entering the juncture must equal the total current exiting. **Conservation of mass**! This also means –no junction (or split) means no change in current.

RULE#4

Voltage in SERIES. Remember Voltage is energy. If resister are in series, the total voltage given to the circuit by the battery (or power source) **must be equal to all the losses in the series loop**. **Energy in = Energy out**!

45Volts (supplied) = $V_1 + V_2 + V_3$ (all voltage lost)

RULE#5

Voltage in Parallel. Remember Voltage is **Joules PER Coulomb**. When resistors are in parallel (as shown below) the **voltage drop across any path will be the same**. Different amounts of current may flow in the different paths but (from start to finish) they all lose the same the same amount of **Joules PER COULOMB**.

 $V_1 = 9V$

 $V_2=V_3=3V$ (from A to B)

Voltage drop is 3 volts **Regardless of path taken From A to B**

3 joules per coulomb must be lost.