Finding the Antiderivative (Integral) of a function

As we moue forward please remember that THE REASON WE ARE DOING THIS INTEGRALS (OR ANTIOERIVATIUES) IS... WE WILE EUENTUALGY USE THEM TO FIND AREA UNDER FUNCTIONS

SIMPLE INTEGRAL EXAMPLES
DO yOU UNDERSTAND THAT:
Integration $15^{" \text { undoIng" of Derivation }}$
Integration = Antideriuative

$$
\int f^{\prime}(x) d x=f(x)
$$

$$
\begin{aligned}
& \text { if } \begin{array}{c}
f(x)=x^{2} \\
f^{\prime}(x)=2 x \\
\sqrt{ } / \\
\int 2 x d x=x^{2}
\end{array} .
\end{aligned}
$$

An important tool:
THE QUESTION IS: WHAT FUNCTION (IF I DO THE DERIVATIVE OF IT) wiLE GIVE ME THE ORIGINAL FUnction.

$$
\begin{aligned}
& \int x^{2} d x=\frac{1}{3} x^{3}+c \\
& \int x^{3} d x=\frac{1}{4} x^{4}+C \\
& \int x^{n} d x=\frac{1}{(n+1)} x^{n+1}+c
\end{aligned}
$$

THE QUESTION IS: WHAT FUNCTION (IF I DO THE DERIVATIVE Of IT) wiLe Give ME THE original function.
(1) $\int x^{4} d x=\frac{1}{5} x^{5}+c \cdot \frac{1}{3 / 2}=\frac{2}{3}$
(2) $\int x^{9} d x=\frac{1}{10} x^{10}+C \quad \frac{1}{2}+1=\frac{3}{2}$
(3) $\int \sqrt{x}=\int x^{1 / 2}=\frac{2}{3} x^{3 / 2}+C$
(4) $\int \frac{1}{\sqrt{x}}=\int x^{-\frac{1}{2}}=2 x^{\frac{1}{2}}+c$

$$
-1 / 2+1=1 / 2
$$

(5) $\int \frac{1}{5} x^{2}=\frac{1}{15} x^{3}+c$

$$
\frac{1}{(1 / 2)}=2
$$

$$
\begin{aligned}
& 6 \int 5 x^{3}+2 x+1+\sqrt{x} \\
& =\frac{5}{4} x^{4}+x^{2}+x+\frac{2}{3} x^{3 / 2}+c
\end{aligned}
$$

You Try:
Answer on next pg.
(7) $\int-6 \sqrt{x} d x$
(8) $\int e^{4 x} d x$

Note: if the derivative of the inside of "nested" function is a constant the antiderivative will have to be divided by that constant
(9) $\int 2 e^{3 x} d x=\frac{2}{3} e^{3 x}+C$
(10) $\int \sin (2 x) d x$ $=-\frac{1}{2} \cos (2 x)+c$
(11) $\int \cos (3 x+1) d x=\frac{1}{3} \sin (3 x+1)+c$
(12) $\int(3 x+5)^{6} d x$
(13) $\int(6 x+\pi)^{3} d x$

Important example:
(14) $\int \frac{1}{x}=\ln x+C$
(15)

$$
\begin{aligned}
& \int \frac{2 x^{2}+x+2}{\sqrt{x}} d x \\
= & \int 2 x^{3 / 2}+x^{1 / 2}+2 x^{-1 / 2} d x \\
= & 4 / 5 x^{5 / 2}+2 / 3 x^{3 / 2}+4 x^{1 / 2}+c
\end{aligned}
$$

(16) $\int(x-1)\left(x^{2}+1\right) d x$

Multiply out first
(17) $\int\left(\frac{1}{x^{2}}+\frac{1}{x}+\sin x+e^{2 x}\right) d x$
(18) $\int(\sqrt{x}+x) \sqrt{x}+(3 x+1)^{6}+\cos (\pi x+1) d x$

Answers:
$7=-4 x^{3 / 2}+c$
$8 \quad \frac{1}{4} e^{4 x}+c$
$12=\frac{1}{21}(3 x+5)^{7}+c$
$13=\frac{1}{24}(6 x+\pi)^{4}+c$
$16=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-x+C$
$17=-x^{-1}+\ln x-\cos x+\frac{1}{2} e^{2 x}+c$
$18 \frac{1}{2} x^{2}+\frac{2}{5} x^{5 / 2}+\frac{1}{21}(3 x+1)^{7}+\frac{1}{\pi} \sin (\pi x+1)+c$

