Integrating with Respectto y

Sometimes it is easier (or makes more sense) to integrate (or find an area) while looking at

a function with respect to y instead of x. 3
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Normally, we have seen function is a sort of Top-Bottom
configuration. So we can integrate, as usual, with respect to x.

But if we have an area that appear like this: \

There is no function (equation) that is clearly the Top or
Bottom for the interval shown.

In cases like these we need to do 3 things:

1. Put the function in terms of y
2. Integrate with respecttoy

3. Make sure the function that is farthest to the right is first (top) and function farthest
to the left is second (bottom)

For regions like these
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use this formula
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Example#1

Find the area of the region bounded by the curve y = v/ — 1, the y-axis and the lines y = 1 and y = 5.

Sketch first:
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The curve z = y° + 1, showing the portion "under” the curve from y = 1 to y = 5.

In this case, we express x as a function of ¥

y=vzr-—1
y2:fc—1
r=1y"+1

So the area is given by:
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Example#2

Example: Find the area of the region bounded by the given curves

dx +y2 =0,y =2x+4
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(b) We first solve the two equations 4x + y2 = 0, and y = 2x + 4 for
x as a function of y and get
2
_ _y-4
X =- and x = 5
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Thus we have A = J [—y Y 4] dy = J Y-y
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Example#3
Find the area bounded by the curves

y:mg,y:2—$andy:1.

Sketch first:

Area bounded by y = z2, y =2 — x and y = 1, including a typical rectangle.

So we need to solve y — z? for
T =3y
We need the left hand portion, so x = —\/ﬁ.

Notice that z = 2 — y is to the right of z = —,/y so we choose
To =2 —yand z; = /1.

The intersection of the graphs occurs at (—2,4) and (1, 1).

Sowehave: ¢ =1andd = 4.
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