Integrating with Respect to \mathbf{y}

Sometimes it is easier (or makes more sense) to integrate (or find an area) while looking at a function with respect to y instead of x.

Normally, we have seen function is a sort of Top-Bottom configuration. So we can integrate, as usual, with respect to x .

But if we have an area that appear like this:
There is no function (equation) that is clearly the Top or Bottom for the interval shown.

In cases like these we need to do 3 things:

1. Put the function in terms of y

2. Integrate with respect to y

3. Make sure the function that is farthest to the right is first (top) and function farthest to the left is second (bottom)

For regions like these

use this formula

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

Example\#1

Find the area of the region bounded by the curve $y=\sqrt{x-1}$, the y-axis and the lines $y=1$ and $y=5$.

Sketch first:

The curve $x=y^{2}+1$, showing the portion "under" the curve from $y=1$ to $y=5$.

In this case, we express x as a function of y :

$$
\begin{aligned}
& y=\sqrt{x-1} \\
& y^{2}=x-1 \\
& x=y^{2}+1
\end{aligned}
$$

So the area is given by:

$$
\begin{aligned}
A & =\int_{1}^{5}\left(y^{2}+1\right) d y=\left[\frac{y^{3}}{3}+y\right]_{1}^{5} \\
& =45 \frac{1}{3} \text { sq units }
\end{aligned}
$$

Example\#2

Example: Find the area of the region bounded by the given curves

$$
4 x+y^{2}=0, y=2 x+4
$$

(b) We first solve the two equations $4 x+y^{2}=0$, and $y=2 x+4$ for x as a function of y and get
$x=-\frac{y^{2}}{4}$ and $x=\frac{y-4}{2}$

Thus we have $A=\int_{-4}^{2}\left[-\frac{y^{2}}{4}-\frac{y-4}{2}\right] d y=\int_{-4}^{2}-\frac{y^{2}}{4}-\frac{y}{2}+2 d y=$ $-\frac{y^{3}}{12}-\frac{y^{2}}{4}+\left.2 y\right|_{-4} ^{2}=\left(-\frac{2^{3}}{12}-\frac{2^{2}}{4}+2(2)\right)-\left(-\frac{(-4)^{3}}{12}-\frac{(-4)^{2}}{4}+2(-4)\right)$
$\left(-\frac{8}{12}-\frac{4}{4}+4\right)-\left(\frac{-64}{12}-\frac{16}{4}-8\right)=\left(-\frac{2}{3}-1+4\right)-\left(-\frac{-16}{3}-4-8\right)=$
$-\frac{2}{3}+3-\frac{16}{3}+12=15-\frac{18}{3}=9$

Example\#3

Find the area bounded by the curves

$$
y=x^{2}, y=2-x \text { and } y=1
$$

Sketch first:

$$
\text { Area bounded by } y=x^{2}, y=2-x \text { and } y=1 \text {, including a typical rectangle. }
$$

So we need to solve $y=x^{2}$ for x :

$$
x= \pm \sqrt{y}
$$

We need the left hand portion, so $x=-\sqrt{y}$.
Notice that $x=2-y$ is to the right of $x=-\sqrt{y}$ so we choose
$x_{2}=2-y$ and $x_{1}=-\sqrt{y}$.
The intersection of the graphs occurs at $(-2,4)$ and $(1,1)$.
So we have: $c=1$ and $d=4$.

$$
\begin{aligned}
\text { Area } & =\int_{c}^{d}\left(x_{2}-x_{1}\right) d y \\
& =\int_{1}^{4}([2-y]-[-\sqrt{y}]) d y \\
& =\int_{1}^{4}(2-y+\sqrt{y}) d y \\
& =\left[2 y-\frac{y^{2}}{2}+\frac{2}{3} y^{3 / 2}\right]_{1}^{4} \\
& =\left(\frac{16}{3}\right)-\left(\frac{13}{6}\right) \\
& =\frac{19}{6} \text { sq units }
\end{aligned}
$$

