## Integration Problem Set

1. Evaluate $\sum_{k=1}^{4} k^{k}$.
2. Express $-1+0+\frac{1}{3}+\frac{2}{4}+\frac{3}{5}$ using $\sum$ notation. "i" will start at negative 1 in this case

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right]
$$

Use the formula above to answer the following 2 multiple choice questions:
3. What type of quantity does the above formula represent?
a) slope of $f(x)$ at a
b) the area of a rectangle
c) the area of $x$ number of rectangles
d) the area under $f(x)$ form a to b
4. What does $f\left(x_{i}\right)$ equal in the formula above?
a) $\Delta x+n$
b) $a+i \cdot \Delta x$
c) $(b-a) / n$
d) the area of one rectangle
5. Given the formula and image to the right What is $n$ ?

$$
\sum_{i=1}^{4} f\left(x_{i}\right) \cdot \Delta x
$$

a) $a+i \cdot \Delta x$
b) $\Delta x$
c) 4
d) the number of rectangles
e) both c and d
6. What is the value of $\Delta x$ in the diagram shown to the right?

a) 4
b) 1
c) $\mathrm{b}-\mathrm{a}$
d) 0.5
7. let $f(x)=\frac{1}{x}$ on the interval $[1,4]$.

Estimate the area under $f(x)$ using 6 rectangles

8. Find the approx area below $y=2 e^{x}-1$ from 1 to 2 . Use $n=4$. (answer: 9.56)


## QUESTION \#9

2. $\int\left(-6 x^{3}+9 x^{2}+4 x-3\right) d x$
3. $\int\left(\frac{8}{x}-\frac{5}{x^{2}}+\frac{6}{x^{3}}\right) d x$
4. $\int\left(12 x^{\frac{3}{4}}-9 x^{\frac{5}{3}}\right) d x$
5. $\int \frac{1}{x \sqrt{x}} d x$
6. $\int\left(2 t^{2}-1\right)^{2} d t$
7. $\int d \theta$
8. $\int 5 \cos (\theta) d \theta$
9. $\int 12 \cos (4 \theta) d \theta$
10. $\int 4 \sin \left(\frac{x}{3}\right) d x$
11. $\int 9 e^{\frac{x}{4}} d x$
12. $\int-13 e^{6 t} d t$

## Question\# 10

II. Evaluate the following definite integrals.

1. $\int_{1}^{4}\left(5 x^{2}-8 x+5\right) d x$
2. $\int_{1}^{9}\left(x^{\frac{3}{2}}+2 x+3\right) d x$
3. $\int_{4}^{9}\left(\sqrt{x}+\frac{1}{3 \sqrt{x}}\right) d x$
4. $\int_{1}^{4} \frac{5}{x^{3}} d x$
5. $\int_{-1}^{2}(1+3 t) t^{2} d t$
6. $\int_{-2}^{1}\left(2 t^{2}-1\right)^{2} d t$

## Finding Areas

11. Find both the net and gross area of the area bound by the function below $y=x^{2}-x-6$.

12. Find the both the net and gross areas bound by the $x$-axis and the function below:
$f(x)=x^{3}+2 x^{2}-3 x$. Use a graphing utility or the internet to first create a sketch.
13. 

Find the area of the region enclosed by the following curves: $y_{1}=e^{x}, y_{2}=x^{2}-1, x=-1$ and $x=1$.

As always, we will first draw a sketch.

14.
a) Have a peek at the graph shown to the right representing the area bound by:

$$
9-x^{2} \text { and } x^{3}-9 x
$$

b) Determine all the boundaries and intersections needed to find this area (without relying on the graph).
c) Find the area bound by the two functions.

15. Find the area bound by the functions show below. Find intercepts first - show your work.

$$
\begin{aligned}
& x=4-y^{2} \\
& x=y-2
\end{aligned}
$$


16.

Find the area of the region bounded by $y^{2}+1, x=0, y=1, y=2$. (of course draw a sketch first - show all your work)

## Answers:

1. 288
2. $\sum_{i=-1}^{5} \frac{1}{i}$
3. d
4. b
5. e
6. d
7. 1.21
8. 9.56

## 9. Watch the numbering please! Even ones only

2. $\int\left(-6 x^{3}+9 x^{2}+4 x-3\right) d x=\frac{-3 x^{4}}{2}+3 x^{3}+2 x^{2}-3 x+C$
3. $\int\left(x^{\frac{3}{2}}+2 x+3\right) d x=\frac{2 x^{\frac{5}{2}}}{5}+x^{2}+3 x+C$
4. $\int\left(\frac{8}{x}-\frac{5}{x^{2}}+\frac{6}{x^{3}}\right) d x=\int\left(\frac{8}{x}-5 x^{-2}+6 x^{-3}\right) d x$
$=8 \operatorname{Ln}(x)-\frac{5 x^{-1}}{-1}+\frac{6 x^{-2}}{-2}=8 \operatorname{Ln}(x)+\frac{5}{x}-\frac{3}{x^{2}}+C$
5. $\left.\int\left(\sqrt{x}+\frac{1}{3 \sqrt{x}}\right) d x=\int x^{\frac{1}{2}}+\frac{1}{3} x^{-\frac{1}{2}}\right) d x$
$=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{1}{3} \frac{x^{\frac{1}{2}}}{\frac{1}{2}}=\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{3} x^{\frac{1}{2}}+C$
6. $\int\left(12 x^{\frac{3}{4}}-9 x^{\frac{5}{3}}\right) d x=\frac{48 x^{\frac{7}{4}}}{7}-\frac{27 x^{\frac{8}{3}}}{8}+c$
7. $\int \frac{x^{2}+4}{x^{2}} d x=\int 1+4 x^{-2} d x=x-\frac{4}{x}+C$
8. $\int \frac{1}{x \sqrt{x}} d x=\int x^{-\frac{3}{2}} d x=-\frac{2}{\sqrt{x}}+C$
9. $\int d \theta=\theta+C$
10. $\int 5 \cos (\theta) d \theta=5 \sin (\theta)+C$
11. $\int 12 \cos (4 \theta) d \theta=3 \sin 4 \theta+C$
12. $\int 4 \sin \left(\frac{x}{3}\right) d x=-12 \cos \left(\frac{x}{3}\right)+C$
13. $\int 9 e^{\frac{x}{4}} d x=36 e^{\frac{x}{4}}+C$
14. $\int-13 e^{6 t} d t=-\frac{13 e^{6 t}}{6}+C$
15. 16. $\int_{1}^{4}\left(5 x^{2}-8 x+5\right) d x=\left.\left(\frac{5 x^{3}}{3}-4 x^{2}+5 x\right)_{1}^{4}\right|^{-4}=\frac{188}{3}-\frac{8}{3}=60$
1. $\int_{1}^{9}\left(x^{\frac{3}{2}}+2 x+3\right) d x=\left.\left(\frac{2 x^{\frac{5}{2}}}{5}+x^{2}+3 x\right)\right|_{1} ^{9}=\frac{1026}{5}-\frac{22}{5}=\frac{1001}{5}=200.2$
2. $\int_{4}^{9}\left(\sqrt{x}+\frac{1}{3 \sqrt{x}}\right) d x=\left.\left(\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{3} x^{\frac{1}{2}}\right)\right|_{4} ^{9}=20-\frac{20}{3}=\frac{40}{3}=13.333$
3. $\int_{1}^{4} \frac{5}{x^{3}} d x=-\left.\frac{5}{2 x^{2}}\right|_{1} ^{4}=-\frac{5}{32}+\frac{5}{2}=\frac{75}{32}=2.344$
4. $\int_{-1}^{2}(1+3 t) t^{2} d t=\left.\left(\frac{t^{3}}{3}+\frac{3 t^{4}}{4}\right)\right|_{-1} ^{2}=\frac{44}{3}-\frac{5}{12}=\frac{57}{4}=14.25$
5. $\int_{-2}^{1}\left(2 t^{2}-1\right)^{2} d t=\left.\left(\frac{4 t^{5}}{5}-\frac{4 t^{3}}{3}+t\right)\right|_{-2} ^{1}=\frac{7}{15}+\frac{254}{15}=\frac{87}{5}=17.4$
6. [Answer: Net: - 0.833 Gross: 26.166]
7. [Answer: Net: 10.667, Gross: 11.8333]
8. [Answer: 3.68]
9. [answer: 49.333]
10. [answer: 20.8333]
11. Answer: 3.33
