Electrostatic Force and Field Examples

Example:

Two point charges of 1.8×10^{-6} C and 2.4×10^{-6} C produce a force of 2.2×10^{-3} N on each other. How far apart are these two charges?

$$F = \frac{k_{q,q_{2}}}{r^{2}}$$

$$r = \sqrt{\frac{k_{q,q_{2}}}{F_{E}}}$$

$$r = \sqrt{\frac{(q.0 \times 10^{9})(1.8 \times 10^{5})(2.4 \times 10^{-5})}{2.2 \times 10^{-3}}}$$

$$(F = 4.2m)$$

Example:

A charge of 1.7×10^{-6} C is placed 2.0×10^{-2} m from a charge of 2.5×10^{-6} C and 3.5×10^{-2} m from a charge of -2.0×10^{-6} as shown. 1.7x10⁻⁶ C 2.5x10⁻⁶ C -2.0x10⁻⁶ C

What is the net electric force on the 1.7×10^{-6} charge?

$$F_{net} = W_{lnner} - Loser \qquad F_{AB} = \frac{k_{Q,A}Q_{,B}}{r_{AB}^{2}}$$

$$F_{net} = F_{AB} - F_{Ac} \qquad F_{AB} = \frac{(Q.0 \times 10^{9})(1.7 \times 10^{6})(2.5 \times 10^{6})}{(2.0 \times 10^{-2})^{2}} = 95.6N$$

$$F_{net} = 95.6N - 25.0N \qquad F_{Ac} = \frac{k_{Q,A}Q_{,c}}{r_{Ac}^{2}}$$

$$F_{Net} = 71N$$

$$F_{Ac} = \frac{(Q.0 \times 10^{9})(1.7 \times 10^{6})(2.0 \times 10^{6})}{(3.5 \times 10^{-2})^{2}} = 25.0N$$

Direction of net force will be to the left

Fields:

Example:

F - Ea

What is the electric field strength at a point where a -2.00 uC charge experiences an electric force of $5.30 \times 10^{-4} \text{ N}$?

 $= \frac{5.3 \times 10 \text{ N}}{2.00 \times 10^{-4} \text{C}}$

265N/C

Example:

Ð

At a distance of 7.50×10^{-1} m from a small charged object the electric field strength is 2.10×10^{4} N/C. At what distance from this same object would the electric field strength be 4.20×10^{4} N/C?

E = 4.2×10 N/L

 $= \frac{k_{1}}{r^{2}} q^{2} = \frac{\vec{E}r_{1}^{2}}{k} = 1.3125 \times 10^{-2} C$

 $\vec{E} = \frac{k_1 \epsilon}{r_2} q is the same!$

== = 2.10×104N/c

Important Note: the **Direction of an electric field** is the direction that a **positive "test charge" would feel a force.**

Example: Example: What is the strength of an electric field midway Two 5.25 uC charges are 0.40 m apart. What is the between a 2.00 uC charge and a -4.00 uC that are 0.60 strength of the electric field between them at a point 0.10 m away from the first charge and 0.30 m away m apart? from the second? E, ~ 2.00×10 6. 5.25210 $E_1 = \frac{kq_1}{r_1^2} = 20000 \text{ N/C}$ = 4725000 N/C $E_2 = \frac{kq_2}{r^2} = 400000 N/C usc^{-11}$ $E_2 = \frac{k_{12}}{k_1} = 525000 \text{ N/L}$ E = E + E = 600 000 N/C Er = E1 - E2 = 4.20 × 10 N/