Concavity and the Second Derivative Test

The second derivative of a function $f^{\prime \prime}(x)$ can be described as the rate of change of the slope
(a measure of how the slope is changing)

If the slope is increasing - concave up

If the slope is decreasing - concave down

Look carefully at the graphs above to see if this makes sense

Test for Concavity

Let f be a function and suppose $f^{\prime \prime}$ exists at all points in the interval (a, b).

Then f is concave up on (a, b) if $f^{\prime \prime}(c)>0$ for all c in (a, b)
Then f is concave down on (a, b) if $f^{\prime \prime}(c)<0$ for all c in (a, b).

If $f^{\prime \prime}(x)>0$ (positive)

concave up

If $f^{\prime \prime}(x)<0$ (negative)

concave down

The concavity of a function can be useful in finding local extrema.

$$
\begin{aligned}
f^{\prime}(c) & =0 \\
f^{\prime \prime}(c) & >0
\end{aligned}
$$

$$
f^{\prime}(c)=0
$$

$$
f^{\prime \prime}(c)<0
$$

local minimum

local maximum

The Second Derivative Test

Let f be a function and c a point in the domain of f, then:

$$
\begin{aligned}
& f^{\prime}(c)=0 \text { and } f^{\prime \prime}(c)>0 \quad \Longrightarrow \quad f(c) \text { is a local minimum } \\
& f^{\prime}(c)=0 \text { and } f^{\prime \prime}(c)<0 \quad \Longrightarrow \quad f(c) \text { is a local maximum } \\
& f^{\prime}(c)=0 \text { and } f^{\prime \prime}(c)=0 \quad \Longrightarrow \quad \text { NOTHING! }
\end{aligned}
$$

$f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ is undef. $\quad \Longrightarrow \quad$ NOTHING!

Inflection points

An inflection point is were the a graph will change from concave up to concave down or the opposite. Inflection points occure when there is a change in concavity.

inflection point $\Rightarrow f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ is undefined

Definition

An x-value where a function goes from concave up to concave down is called an inflection point.
$x=c$ is an inflection point $\Rightarrow f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ is undefined
$x=c$ is an inflection point $\nLeftarrow f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ is undefined
The points $x=c$ in the domain of f where either
(1) $f^{\prime \prime}(c)=0$, or
(2) $f^{\prime \prime}(c)$ is undefined,
will be called $2^{\text {nd }}$ critical points of f.

Workbook Problems:

Pg. 195 1-4, try 5 and 6
Pg. 198 Ex. 3
Pg. 199 1-3
Pg. 200 1-4
Pg. 203 1-2
Pg. 210 Ex. 5

